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Outline
• Dynamics ----------------Spirals, Circles, Hybrids

• Mechanics ----------------Small Test Ring

• Projectiles, Sliding Friction ---- Expt. & Theory

• Defense Machines----Table of Sizes for values of mproj,V

• Global Reach Machines and Space Launch
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CONSIDER A CLASSICAL SLING
With Constant Frequency  f and  growing string  so  V = 2πRf

Power ≅ (mV2/R)vsinθ

It's Phase Stable !

∆V per turn ≅ 2πvsinθ

BUT STRING BREAKS:  mV2/R = (2πmf)V 
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SAME  SLING  DYNAMICS  V ~ 2πRf
SWING SPEED v = 2πrf AND  PHASE  STABLE

BUT Impulse/Unit Length  ≅ (mV2/R)V-1 = 2πmf = Constant
Tube survives even for constant wall thickness!

Projectile Stream now possible!
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Note the Similarities
Constant Frequency Machine
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Centripetal Wave Travels Around Spiral at Speed 
V = vR/r >> v.   V = speed of constant q phase point.

Can also phase swing.
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Phase-Swing like a Surfer
Projectile Phase Swing in a Few Circle Turns.

Up to 50% SMALLER R for given final speed, but needs injection 
speed.  Fast  wave “elastic collision” gives 2Vwave – Vinject
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Minimize Diameter with Hybrid Design
A Combination consisting of a phase-locked spiral that feeds into an 
outer phase-swing multi-turn ring.  Initial projectile speed at spiral 
entrance from simple release when breechblock swinging forward.
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Approximate Equation for Acceleration
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MECHANICS:  Must implement a useful gyration speed.
SLIDING FRICTION:  Must have low sliding friction.
But Friction decreases for both high V and large m(proj) 

due to formation of a gas bearing !
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Small Components-Test Slingatron
Al Plates Capture Bearings, Tube, and Shafts.  Load on Bearing Rollers =

(outer race + rollers + clamping plates + tube segment).  
C-Film provides a journal bearing in parallel with needle rollers for backup.
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Exploded Clamping Plates for Test Ring
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Assembled Test Ring, dia 2 ft
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Venting of Projectile Bearing Gas
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Swing Arm Pair with Counterweights
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Swing Arm Pair with Counterweights
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Components Test Ring 
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Small (dia = 2 ft) Slingatron Test Machine
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Single Shot Projectile-Release  
Startup provided by forward motion of breechblock.  No other initial 

V needed.  Feeds for Rapid Fire Stream discussed later.
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Components Test Machine and a Follow-on 
Hybrid Machine for 20 lbs to 2.5 k/s

SMALL TEST MACHINE
Ring dia 2ft.  Projectile mass  0.5 - 1 lb.  Swing r = 3.15 in. For
Cronidur 30 brgs and Al plates, v(swing) ~ 50 m/s, and V ~ 340 
m/s. Projectile tests including moderately large L/D.

Continuous operation at 4,800 rpm with 50% rated load (assumed 
life measure L/L10=0.08) gives a zero-failure lifetime of 3 hours 
(with reliability  90%) for 48 brg assembly.  Machine will mostly 
idle with short visits to high rpm.   Life ~ (1/f) 20/3.

FOLLOW-ON MACHINE: Add turns in stages using modularized 
components. E.G., Choose bore so m = 20 lbs.  Then V = 2 km/sec
when Dia = 8.7 meters, and continue to add turns for more V.
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WHAT  ABOUT  LARGE  L/D  PROJECTILES ?
Spring-Loaded Rods Lock Segments into Straight Position as Traverse 
Straight Section of Tube at Exit.  Large L/D stability tolerates some 

radial asymmetry as combustible bearing burns off in air flight.
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A Large L/D Projectile in an inner turn. Accelerating Force is 
Distributed along Projectile. Equivalent to Sliding Downhill in Strong g. 

Can use a Smaller Bore Tube for a given Projectile Mass.
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Exit Angular Dispersion
• Assume Projectile traverses a straight segment at exit equal to 

projectile length Lproj in a time  texit = Lproj /V.
• Fraction of gyration period is,

• Design so exits when swing v parallel to projectile V so 
perpendicular kick proportional to

High-V gyration dispersion < 10-3 rads.  
BUT ALL  LONG  RANGE  MISSIONS  (GUNS OR SLINGATRONS) 
REQUIRE  SMART  PROJECTILES
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Projectile Sliding Friction 
Gas Film Provided by Evaporation of a Low Thermal 

Conductivity Projectile Surface Layer 

Theoretical Model shows Larger Geometrically Similar 
Projectiles have:
(1) smaller High-V Sliding Friction Coefficient 
(2) smaller Fractional Mass Loss 
(3) same track T increase immediately behind

projectile
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Sled Evaporation Supplies Gas Film for Low Friction at High V
Larger projectiles →Smaller Friction (Thicker gas film)

Faster projectile → Smaller Friction (Hotter lower density gas film)
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FRICTION  EXPERIMENTS,1999-2000

Two Stage
Light Gas Gun

Projectile Sliding Friction to  ~ 2.5 km/s 
Containment Data for ∆V ~ 10 km/s

0.74 gm Lexan Projectile 
slid to rest from 2.06 k/s



ALCorp

26

Sliding Friction Coefficient for 
Small 0.8 gm Lexan Projectiles

µ = π-1 ln(Vin/Vout)

Teflon on steel
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Mass Loss of Small Lexan Projectiles

Mass Loss Data for 0.738 gram Lexan Projectiles that Slide to Rest in a Multi-Turn “Soft 
Catch”.  For Vin = 3.4 km/sec about 50% of the 0.738 gram projectile had Ablated Away, and 

above 4 km/sec the Projectiles Broke Up so data could not be obtained. For a Slingatron
Accelerating Similar 0.738 gram Lexan Projectiles with a Net Force equal to 3 times the 

Frictional Drag, one expects ~  0.33 times the above Mass Loss. Less for larger projectiles.
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Small Ring Demonstrated Phase Stability, 1995.
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Scaling for Constant Load on Swing Arm Pair

Hold swing gv and mload per orbiting plate brg constant, so bearing 
life constant.  Then machine size decreases for a given V if r and 
swing speed v are decreased.   But this requires lower projectile 

friction, i.e., larger projectiles.
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High Performance Hybrid Slingatrons
Separate Locations on Swing Plate for Swing-Arm-Bearings and Tube. 

Projectiles fed from center region.



ALCorp

31

Centripetal Feed of Projectiles
Swing arms do not clutter the entrance end of slingatron when 

bearing space is separated from spiral tube.  Can feed a 
stream of moderate L/D Projectiles.
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Alternative Projectile Feed System using inner turns as a 
Storage “Magazine” on Swing Plate.  Magazine participates in 

orbital motion that feeds projectiles forward via one-way 
valves.  Also works for large L/D.
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Hybrid Spiral-Ring System with Bearing Assembly Modules.
C-Film on shaft for bearing backup.  Replace a tray when it shows more 
friction (C-coated shaft “journal” backup).  Projectile impulse per unit 

length absorbed by disc.
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Side View. Arms could be Horizontal for Large 
mproj because smaller µ allows smaller r, v.
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Mechanical Improvements ?

(1)  Better Roller Bearings, Cronidur 30.  Kevlar Clamping Plates 
to reduce orbiting mass.  

(2)  Journal Bearings:  NFC (Near Frictionless Carbon) Films on 
steel.  Data at Argonne Labs.   In clean environment of dry 
N2 or Argon,  µ = 0.001 or less.  Low wear rates.   Potential 
for Higher Loads.  Dry N2 gas would be a burden, but 
perhaps acceptable for increased performance.  Journals 
could at least share rpm’s via some inner race rotation for 
longer life for rollers.

(3)  Advanced Fibers, e.g., Spectra, for low-ρ reinforcement of 
steel arms (for longer high v-swing arms).
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DEFENSE 
A Simple Mechanical System with Motors

Outer Ring Diameters D(meters) for Various Projectile Masses lbs and 
Velocities k/s.  Large L/D Projectiles.  Numbers based on design 

including only item (1) in preceding viewgraph, i.e., potentially smaller.

D = 141
meters

D = 52D = 30.4D = 11.2
Close to friction 
limit for this “low 
mass” case.

V = 6
k/s

D = 90.7D = 33.4D = 19.5D = 7.2 V = 4
k/s

D =40.3D =14.9D =8.7 D = 3.2 
meters

V = 2
k/s

2000lbs100 lbs20 lbm = 1 lb
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Extreme L/D Projectiles can be 
Accelerated and have Advantages

• Smaller Slingatron Bore
for a Given Projectile Mass.  Impulse distributed
over wider arc of clamping plates.

• Smaller Air Drag
potential low cost Multiple Shots with Global Reach
from CONUS.

• Negligible Air Mass Snowplowed
inside long Accelerator Tube (vent holes anyway).

• Can Penetrate Atmosphere to Space
Low Elevation Angle Launch (e.g., 15o ) for apogee 
kick into orbit.
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Scaling to Geometrically Similar Systems
Multiply all dimensions by β, while holding velocities v, V, constant.

ScalingQuantity

const. mV2/R
A

Bearing pressure of projectile

decreasesfaster
than β-0.5Projectile sliding friction

const.
Projectile impulse/length

Tube mass/length

~ β-1Mechanical rolling friction coefficient 
~ β-1/2Projectile Fractional Mass Loss ∆m/m 

const.Track Heating behind projectile

rpm's ~ β-1side area ~ β2Bearings rated load and rpm’s

~ β2~ β3/βCentripetal force, Structure Cross-
Sections

~ βSwing radius    &      period (= 1/f)
~ β3Masses
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Global or Space Launch
Low Cost Launch of numerous Hypervelocity Large L/D  Projectiles 

through the Atmosphere for Global Access, Space, Asteroid Defense.
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Impact Physics Experiments
Staging unique to inertial fusion. Use Magnetized DT Impact Fusion 

to Ignite Larger Advanced Fuel for Power Production 

DT magnetized fuel target ignites Second Stage pB11.  Large reduction in 
neutrons and radioactive products per energy.  Benign He product.

B11(5p,6n) + p = 3α + 8.7 MeV 
B11 is 80% of natural Boron.  Broad cross-section centered at ~ 675 kev. 

Hydride, decaborane B10H14 ~ 1 gm/cc (boils at 213oC). 
DT explosion must heat pB to ~ 100 keV.   Yield ~ 72 GJ/gm of pB. 
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Is there a Potential Role for Direct EM Drive ?
Magnetic-Field could push on receding half of ring and pull on approaching half, 

i.e., push-pull propulsion power with a larger torque-arm than motor shafts.   
Potential for alleviating loads on roller bearings for more lifetime.
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Slingatron Advantages
• Purely Mechanical Approach to Hypervelocity 

• Off-the-Shelf Drive Motors (Combustion or Electric)

• Steel Tubes with Long Lifetime and Rapid Fire

• Inertial Energy Storage in the Swing Machinery

• No High Voltage, Tube Arc Damage, or Pulsed Power

• Projectiles with very Large Mass and  L/D possible.  Sliding

friction decreases with increasing projectile size.

• A Rugged Machine that can be Maintained with 

Replacement Parts.

Potential Applications: defense, industry, space, energy.
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Slingatron Disadvantages
• Exit Dispersion is higher than conventional guns

But at long ranges need smart projectiles anyway

• Physically large with different "footprint“.  
But, Recent Designs are smaller due to hybrid designs, and lower
friction  for larger mass projectiles allows lower swing v that
translates into lower r and R for given swing g = v2/r.   Advanced
materials and designs expected to allow further size reduction.
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Summary

• Strong theoretical foundation

• Friction data and theory……… hypervelocity is achievable

• Mechanical designs………… can build and further improve

with designs and advanced materials.  

• Wide Range of Potential Applications
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